Given a list of dominoes, dominoes[i] = [a, b] is equivalent to dominoes[j] = [c, d] if and only if either (a==c and b==d), or (a==d and b==c) – that is, one domino can be rotated to be equal to another domino.
Return the number of pairs (i, j) for which 0 <= i < j < dominoes.length, and dominoes[i] is equivalent to dominoes[j].
Example 1:
Input: dominoes = [[1,2],[2,1],[3,4],[5,6]] Output: 1
Constraints:
1 <= dominoes.length <= 400001 <= dominoes[i][j] <= 9
Solution:
Transform the input pair into two digits number which is (min([0], [1]) * 10 + max([0], [1])), and use a map to count the frequency.
The number of pair will be [v * (v – 1) / 2], v means the frequency amount.
class Solution { public int numEquivDominoPairs(int[][] dominoes) { Map<Integer, Integer> count = new HashMap<>(); int numPair = 0; //dominoes into code (min * 10 + max) for (int[] d : dominoes) { int num = Math.min(d[0], d[1]) * 10 + Math.max(d[0], d[1]); count.put(num, count.getOrDefault(num, 0) + 1); } //cnt += v * (v - 1) / 2 for (int v : count.values()) { numPair += v * (v - 1) / 2; } return numPair; } }
Time complexity: O(N).
Space complexity: O(N).